Crowdsourcing Data Collection of the Retail Tobacco Environment: Case Study Comparing Data From Crowdsourced Workers to Trained Data Collectors

Article in Tobacco control - February 2014
DOI: 10.1136/tobaccocontrol-2013-051298 · Source: PubMed

3 authors:

Annice E Kim
RTI International
45 PUBLICATIONS 1,702 CITATIONS

Alicea (Allie) Lieberman
University of California, San Diego
10 PUBLICATIONS 123 CITATIONS

Daniel Dench
RTI International
10 PUBLICATIONS 70 CITATIONS
Crowdsourcing data collection of the retail tobacco environment: case study comparing data from crowdsourced workers to trained data collectors

Annice E Kim,1 Alicea J Lieberman,2 Daniel Dench1

ABSTRACT
Objective To assess whether crowdsourcing is a viable option for conducting surveillance of point of sale (POS) tobacco marketing practices.
Methods We posted jobs to an online crowdsourcing platform to audit 194 Florida licensed tobacco retailers over a 3-week period. During the same period, trained data collectors conducted audits at the same retail locations. Data were collected on cigarette advertising, cigarette promotions and product availability (electronic cigarettes, snus and dissolvables). We compared data collected by crowdsourced workers and trained staff and computed frequencies, percent agreement and inter-rater reliability. Photographs of e-cigarettes and exterior cigarette advertisements submitted by crowdsourced workers were used to validate responses.
Results Inter-rater reliability between crowdsourced and trained data collectors was moderate to high for coding exterior cigarette advertisements, product availability and some tobacco promotions, but poor to fair when coding presence of sales and interior cigarette advertisements. Photos submitted by crowdsourced workers confirmed e-cigarette availability that was missed by trained data collectors in three stores.
Conclusions Crowdsourcing may be a promising form of data collection for some POS tobacco measures. Future studies should examine the cost-effectiveness of crowdsourcing compared with traditional trained data collectors and assess which POS measures are most amenable to crowdsourcing.

INTRODUCTION
The retail environment is the primary advertising channel for the tobacco industry accounting for over 80% of its annual $8.3 billion advertising expenditure.1 Exposure to point of sale (POS) tobacco marketing influences youth smoking initiation2 and impulse cigarette purchases among adults,3 which undermines quit attempts and increases relapse among recent quitters. Ongoing surveillance of retail tobacco marketing is needed to inform research and regulatory practices.4 However, traditional retail audits that employ trained field workers are costly and require substantial lead time for planning and implementation. With over 300 000 tobacco retailers across the USA,4 a more sustainable surveillance method is needed.

Crowdsourcing may be a promising approach for conducting tobacco retail audits. Crowdsourcing is an ‘online, distributed problem solving and production model’ that leverages online networks to (1) gather information, (2) distribute large-scale tasks that are easier for humans to process (eg, analysing photos) or (3) solicit ideas or solutions to existing problems as a challenge that can also be vetted by peers.7 Crowdsourcing has been applied to a wide range of health topics,8-12 including collecting local-level data.13 Leveraging online networks to identify individuals who can conduct tobacco retail audits in their neighbourhood could potentially provide more rapid data at a lower cost.

To date, no study has crowdsourced POS tobacco retail audits. A recent study found that crowdsourced workers had high agreement with trained data collectors when coding text data,14 but these results may not generalise to retail audits. The purpose of this study was to examine the feasibility of crowdsourcing tobacco retail data and to compare the quality of data collected by crowdsourced and trained data collectors. Results will inform whether crowdsourcing is a viable option for POS surveillance.

METHODS
RTI conducts an annual audit of licensed tobacco retailers for the Bureau of Tobacco Free Florida.15 Annually, RTI trains data collectors, ensures high inter-rater reliability and validity, and deploys data collectors to collect data from a random sample of licensed tobacco retailers throughout Florida. During the 2012 audit, we implemented a pilot study at a subset of stores to assess how well untrained crowdsourced workers could collect POS data.

Using Gigwalk, a crowdsourcing mobile application, we posted 194 jobs over a 3-week period (31 August 2012 to 19 September 2012) to the same stores that trained data collectors were visiting. Crowdsourced workers received the same codebook instructions as trained data collectors, but no additional training. After workers uploaded survey answers and photos via the Gigwalk app, we reviewed data, requested clarification on incomplete answers and provided payment ($7) for completed work.

Measures
For this initial pilot study, we gave crowdsourced workers only a subset of measures from the full audit form used by trained data collectors. We selected measures that were most commonly collected in previous tobacco retail audits.15 We posted two ‘gigs’:
“Cigarette Audit” (N=99 stores)

Workers recorded whether the store sold Marlboro Red cigarettes and, if so, whether any of the following promotions were available: sale offer, multipack discount, mail-in rebate, coupon, or free pack with purchase. Promotions were coded based on advertisements and displays and not purchase of tobacco products. Workers noted whether cigarette advertisement(s) were present on store exterior and if so, took a photograph. No other photographs were taken.

“Smokeless Audit” (N=95 stores)

Workers recorded whether the store sold snus, dissolvable tobacco, e-cigarettes, and flavored e-cigarettes and whether e-cigarette advertisement(s) were posted inside the store. If e-cigarettes were available, workers took a photograph. No other photographs were taken.

Additionally, Gigwalk provided metadata on date/time that gigs were claimed and completed; worker ID; and GIS longitude/latitude coordinates when data were uploaded. Workers could submit comments/questions, which we addressed throughout data collection.

Analysis

Data were exported from Gigwalk and linked with the trained collectors’ data at the store level. Using Stata 12.0, we computed percent agreement and Cohen’s κ statistics. We interpreted κ values as follows: <0 poor, 0–0.20 slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial and 0.81–1 almost perfect agreement. The proportions of positive and negative agreements are also reported as κ statistics do not take into account prevalence of the attribute and bias. Photos were downloaded and reviewed by a coauthor (AJL) and a research assistant to validate that e-cigarettes and exterior advertisements were present. Any questions were resolved by the primary author (AEK).

RESULTS

Of the 194 jobs posted online, 78.3% were initiated and 72.2% (n=140) were completed. Of the 140 stores completed by crowdsourced workers, 31 were not completed by the trained data collectors. The total sample for comparison was 109 stores, 55 for the cigarette audit and 54 for the smokeless audit. Twenty-five crowdsourced workers completed an average of three audits (range 1–25 stores). The median time to complete the audit was 18.1 h within posting the job online.

Table 1 summarises agreement between crowdsourced and trained data collectors. There was substantial agreement on exterior cigarette advertisements (85.5%, κ=0.71, p<0.01) but only fair agreement on interior e-cigarette advertising (88.9% agreement, κ=0.21, p=0.037).

Crowdsourced and trained data collectors had overall high agreement on coding mail-in rebate (98.2%) and coupons (96.4%). However, κ was either zero or could not be computed because of either perfect agreement (ie, no variability) or low prevalence rate (ie, small cell sizes). There was moderate agreement for multipack discounts (87% agreement, κ=0.46, p=0.000) and poor agreement for sales offers (63.2% agreement, κ=-0.06, p=0.837).

When coding product availability, there was moderate agreement for snus (85.2% agreement, κ=0.57, p<0.01) and e-cigarettes (79.6% agreement, κ=0.57, p<0.01), but only fair agreement for flavoured e-cigarettes (73.2% agreement, κ=0.35, p<0.01). There was high agreement for dissolvables (92.6%), but κ was zero due to low prevalence rates.

Photos were examined to validate exterior advertisements and e-cigarette availability. Crowdsourced workers noted that 28 stores displayed exterior advertisements, whereas trained data collectors noted 30 stores. We reviewed the photos submitted by crowdsourced workers and confirmed that of the 28 stores, 27 had exterior advertisements, while one was mis-coded. We also examined the photos of other stores that crowdsourced workers classified as not having exterior advertisements and found that two stores did in fact have exterior advertisements. If these two stores had been coded correctly, the agreement between crowdsourced workers and trained surveyors would be higher. Crowdsourced workers noted that 23 stores sold e-cigarettes and photos were confirmed for 21 stores but 2 stores could not be verified because of low-quality photos. Trained surveyors noted e-cigarette availability in only 18 stores.

DISCUSSION

For most measures, we found high agreement between crowdsourced and trained data collectors. Agreement was lower for sales offers and interior advertisements, which can be challenging to code without the extensive training that field data collectors received. Due to limited resources, we did not have a gold standard for all measures. In this study, photos of e-cigarettes and exterior advertisements served to validate the presence but not the absence of products and advertising. We found that crowdsourced workers were more accurate than trained data collectors in coding e-cigarette availability. However, this may be due to some crowdsourced workers interacting with clerks (suggested in some photos where clerk was holding an e-cigarette) versus trained data collectors who collected data inconspicuously.

This study had several limitations. First, store environments could have changed between the time that crowdsourced and trained data collectors visited the same stores, which may explain some disagreements. Second, we could not directly compare the cost between the two approaches because the contractor that managed the data collection did not specify how much of the $60 cost per store audit was for the trained data collector’s wage versus overhead costs. Third, we were unable to examine whether factors like photo submission, GPS tracking, survey mode (phone app vs pen and paper) or procedure in store (collecting data inconspicuously vs interacting with clerks) may have influenced differences in the quality of data collected by crowdsourced versus trained workers. Fourth, we were unable to validate responses for all measures due to cost constraints. This is a general challenge for the field given that validity assessments were only reported in 6% of tobacco retail audit studies. Our results suggest that photos may be useful for assessing validity.

Crowdsourcing retail audit data may have several benefits. First, data collection can be deployed quickly with minimal lead time providing rapid data to policymakers. Second, locals’ familiarity with their neighbourhood could facilitate data collection. However, this could also be a potential hindrance if assessing retailers’ compliance with regulations. Finally, because crowdsourced platforms like Gigwalk have an app that can be downloaded on mobile devices, researchers can easily collect photographs and geolocation data without having to build these capabilities. Photographs can serve as validity assessments or as data sources for coding.

In conclusion, crowdsourcing may be a viable option for collecting data on the tobacco retail environment. Future studies should systematically test other POS measures, crowdsourcing
platforms and quantify potential cost benefits so that we understand how crowdsourcing can be best leveraged for tobacco retail audits.

What this paper adds

- Ongoing surveillance of retail tobacco marketing is needed to inform research and regulatory practices. However, the traditional method of using trained field workers to conduct retail audits can be costly and requires substantial lead time for planning and implementation.
- The results of this study suggest that crowdsourcing may be a promising method for conducting tobacco retail audits. We found high agreement between untrained crowdsourced workers and trained data collectors for most point-of-sale measures.

12 Swan M. Crowdsourced health research studies: an important emerging complement to clinical trials in the public health research ecosystem. *J Med Internet Res* 2012;14:e46.

17 Landis JR, Koch GG. The measurement of observer agreement for categorical data. *Biometrics* 1977;33:159–74.

Crowdsourcing data collection of the retail tobacco environment: case study comparing data from crowdsourced workers to trained data collectors
Annice E Kim, Alicea J Lieberman and Daniel Dench

Tob Control 2015 24: e6-e9 originally published online February 5, 2014
doi: 10.1136/tobaccocontrol-2013-051298

Updated information and services can be found at:
http://tobaccocontrol.bmj.com/content/24/e1/e6

These include:

References
This article cites 13 articles, 4 of which you can access for free at:
http://tobaccocontrol.bmj.com/content/24/e1/e6#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/